
Unit 3

Functions and Modules

Syllabus :

 Need for functions

 Function: definition, call, variable scope and lifetime, the

return statement.

 Defining functions

 Lambda or anonymous function

 documentation string

 good programming practices

 Introduction to modules

 Introduction to packages in Python

 Introduction to standard library modules.

Need of Functions :

 Functions are very important part of programming

language.

 They help program to be modular. Means they help in

writing small parts of a program which are meaningful.

 These small parts (modules) can be used again and again

at different places in a program.

 Example :

 Max() is a function to find max element from given list.

 It can be used again and again.

 Print() is a most commonly used function.

Defining functions :
 When new function is to be used we need to first define

it.

 Local variables or objects cannot be accessed outside a
function.

 Note : Function name cannot contain spaces or special
characters except underscore (–).

Syntax :

 def<space><function_name>(<parameters>):

 <tab> ……

 <tab> ……

 <tab> return <variables to be returned>

Program : Write a program to add two numbers

using a function :

Call to a function :

 A function can be called from any place in python

script.

 Place or line of call of function should be after

place or line of declaration of function.

 Example: In following code, add function is called

on line 6.

 Add() function definition start on line 2 and ends

on line 4.

 Then add() is called on line 6.

Program :

Variable Scope and Lifetime :
 In functions, there are two kinds of variables, local and

global.

Local Variables / Objects :
 Variables or objects which are used only within given

function are local variables or local objects.

 Local objects include parameters and any variable /

object which is created in a given function.

 Example

 In following code, mult() function has two local variables

 Local variable a and local variable b.

Program :

Global variables / objects :

 Objects which can be accessed throughout the

script/program are global variables or objects.

 Global variables or objects are created in python script

outside any function.

 Global objects are available after “global” keyword

defined in the script.

Global variables / objects :

1. Reading Global variable value

Example

 In following example global variable is accessed for

printing / reading purpose.

 No modification to global variable is done here.

Global variables / objects :

#No modification in global variable id made

def add_gv(a,b):

c=a+b+gv

print("in function value of gv is =",gv)

print("The addition is :",c)

gv=100

print("The initial value of gv =", gv)

add_gv(10,20)

print("After function value of gv =",gv)

Global variables / objects :

Modification of Global Variable Value

 ‘global’ keyword is used to modify a global variable inside

a function.

Example

 In following example “global” keyword is used inside the

function.

 Now global variable can be modified within the function.

 Modifications made in the function (after using “global”)

will stay after the function as well.

Global variables / objects :
#Modification in global variable is made

def add_gv(a,b):

global gv

gv=150

print(gv)

c=a+b+gv

return c

gv=100

print(gv)

x=add_gv(10,20)

print(x)

print(gv)

Arguments to a Function :

A function may accept arguments or it may

not accept any arguments or parameters.

Arguments or Parameters to a function are

treated as local variable for that function.

While defining the function, number of

parameters has to be specified as sequence

of variables.

Types of Arguments :

There are different types of arguments :

Positional Arguments

Default Arguments

Unlimited-Positional Arguments

Keyword Arguments

Types of Arguments :
Positional Arguments :

 These arguments are passed to function based on
their position

 Any normal arguments are positional arguments

 Example. In following example add functional
takes two positional arguments a and b.

 When function is called add(90,78) then arguments
are assigned by their position.

 First position is of a so value 90 will be assigned to
variable a.

 Second position is of b so value 78 will be assigned
to variable b.

Example of Positional Arguments :

Types of Arguments :
Default Arguments

 One of the argument to a function may have its default value.

 For example laptop has default built-in speakers. So if no speaker is
connected it will play default speaker.

 Similarly in function argument, a default value can be assigned to an
argument.

 Now if value for this argument is not passed by the user then function
will consider that arguments default value.

 Calling functions with very large number of arguments can be made
easy by default values

 For example, in following code mult_default function takes b
argument as default.

 So, even if value of b is not passed, then default value of b will be 10.

 It is clear from the result that call mult_default(89) results in 890.

 Means a=89 and b = 10. So result= 89 * 10 = 890

Example of Default Arguments :

Types of Arguments :

Unlimited Positional Arguments

 Some functions can have some compulsory
arguments and after that there can be any
number of arguments.

 Example is print().

 In print() function we can pass any number of
strings separated by comma.

 And all strings will get printed.

 So, programmer can also create such a function
taking unlimited arguments.

Types of Arguments :

Keyword Arguments

 These are another special category of arguments

supported in python.

 Here arguments are passed in format “key=value”

 All key-word arguments can be taken in a special

variable with **.

Return Statement :

 It is statement to return from a function to its

previous function who called this function.

 After return control goes out of the current

function.

 All local variables which were allocated memory

in current function will be destroyed.

 Return statement is optional in python.

 Any function can return multiple arguments.

Return Statement :

Example

 return #This returns none value

 return None #This returns none value

 return a, b #This returns two values

 return a #This returns single value

 These all are valid examples of a return

statement.

Anonymous Functions / Lambda Functions :

 Functions containing only single operation can be
converted into an anonymous function.

 ‘Lambda’ is the keyword used to create such
anonymous functions.

Syntax

Lambda < space > <parameter> : < operation >

Example

my_addition = lambda x, y : x + y

print(“addition is ”, my_addition(20, 30))

Output = 50

Documentation String :

 In python, programmer can write a
documentation for every function.

 This documentation can be accessed by other
functions.

Advantage of Document string

 It is useful when we want to know about any
function in python.

 Programmer can simply print the document
string of that function and can know what that
function does.

Documentation String Example:

def func():

"""Welcome to Coulomb"""

return

print(func.__doc__)

Standard Libraries in Python :

1. Math (import math)

 This is a package for providing various functionalities
regarding mathematical operations.

2. Random (import random)

 This is the module which supports various functions for
generation of random numbers and setting seed of
random number generator.

3. Numpy (import numpy)

 This is a package in python which supports various
numeric operations. It supports multidimensional arrays
or matrices and their calculations.

4. Scipy (import scipy)

 This is the package for various scientific computations.

Introduction to Modules :

Modules make python programs re-usable.

Every python code (.py) file can be treated
as a module.

A module can be accessed in other module
using import statement.

A single module can have multiple functions
or classes.

Each function or class can be accessed
separately in import statement.

Introduction to Modules :

Example to create your own module

 Create a file named sample.py in your directory.

 Write function add() in it. (as we have seen in
previous sections)

 Now create another file trial.py in same directory

 In trial.py write

 import sample.add
print(“addition is “, sample.add(10,20))

 Now run trial.py.

 Now the output will be 30.

