Unit 3
Functions and Modules

Syllabus :

» Need for functions

» Function: definition, call, variable scope and lifetime, the
return statement.

» Defining functions

» Lambda or anonymous function

» documentation string

» good programming practices

» Introduction to modules

» Introduction to packages in Python

» Introduction to standard library modules.

Need of Functions :

» Functions are very important part of programming
language.

» They help program to be modular. Means they help in
writing small parts of a program which are meaningful.

» These small parts (modules) can be used again and again
at different places in a program.

» Example :

» Max() is a function to find max element from given list.
» |t can be used again and again.

» Print() is a most commonly used function.

Defining functions :

» When new function is to be used we need to first define
it.

» Local variables or objects cannot be accessed outside a
function.

» Note : Function name cannot contain spaces or special
characters except underscore (-).

Syntax :
» def<space><function_name>(<parameters>):
» <tab> ...

» <tab> return <variables to be returned>

Program : Write a program to add two numbers
using a function :

1 & S1mple aagd functlon
2 def add(a.b):

1 c=a+h

¥ return c

r; c= add(90,78)
I print(*Addition is *, c)

Call to a function :

» A function can be called from any place in python
script.

» Place or line of call of function should be after
place or line of declaration of function.

» Example: In following code, add function is called
on line 6.

» Add() function definition start on line 2 and ends
on line 4.

» Then add() is called on line 6.

Program :

1
2
3
4
5
b
7

Function to return a single value
def add(a,b):

Cc=a+b

return c

c= add(16,43)
print{"Addition is ", c)

Variable Scope and Lifetime :

» In functions, there are two kinds of variables, local and
global.

Local Variables / Objects :

» Variables or objects which are used only within given
function are local variables or local objects.

» Local objects include parameters and any variable /
object which is created in a given function.

» Example

» In following code, mult() function has two local variables
» Local variable a and local variable b.

Program :

1 # Function to multiply two numbers
2 def mult(a,b):

3 return a*b
4
5

print("Multiplication 1s",mult(89,3))

Global variables / objects :

» Objects which can be accessed throughout the
script/program are global variables or objects.

» Global variables or objects are created in python script
outside any function.

» Global objects are available after “global” keyword
defined in the script.

Global variables / objects :

1. Reading Global variable value
Example

» In following example global variable is accessed for
printing / reading purpose.

» No modification to global variable is done here.

Global variables / objects :

#No modification in global variable id made
def add_gv(a,b):

c=a+b+gv

print("in function value of gv is =",gv)

print("The addition is :",c)

gv=100
print("The initial value of gv =", gv)
add_gv(10,20)

print("After function value of gv =",gv)

Global variables / objects :

Modification of Global Variable Value

» ‘global’ keyword is used to modify a global variable inside
a function.

Example

» In following example “global” keyword is used inside the
function.

» Now global variable can be modified within the function.

» Modifications made in the function (after using “global”)
will stay after the function as well.

Global variables / objects :

#Modification in global variable is made
def add_gv(a,b):

global gv

gv=150

print(gv)

c=a+b+gv

return c

gv=100
print(gv)
x=add_gv(10,20)
print(x)

print(gv)

Arguments to a Function :

» A function may accept arguments or it may
not accept any arguments or parameters.

» Arguments or Parameters to a function are
treated as local variable for that function.

» While defining the function, number of

parameters has to be specified as sequence
of variables.

Types of Arguments :

There are different types of arguments :
» Positional Arguments

» Default Arguments

» Unlimited-Positional Arguments

» Keyword Arguments

Types of Arguments :

Positional Arguments

» These arguments are passed to function based on
their position

» Any normal arguments are positional arguments

» Example. In following example add functional
takes two positional arguments a and b.

» When function is called add(90,78) then arguments
are assigned by their position.

» First position is of a so value 90 will be assigned to
variable a.

» Second position is of b so value 78 will be assighed
to variable b.

Example of Positional Arguments :

1 # Simple add function
2 def add(a,b):

3 C=a+h

- return c
5

0 c= add(96,78)
7 o print("Addition 15 ", cC}

Types of Arguments :

Default Arguments

>
>

>

v

One of the argument to a function may have its default value.

For example laptop has default built-in speakers. So if no speaker is
connected it will play default speaker.

Similarly in function argument, a default value can be assigned to an
argument.

Now if value for this argument is not passed by the user then function
will consider that arguments default value.

Calling functions with very large number of arguments can be made
easy by default values

For example, in following code mult_default function takes b
argument as default.

So, even if value of b is not passed, then default value of b will be 10.
It is clear from the result that call mult_default(89) results in 890.
Means a=89 and b = 10. So result=89 * 10 = 890

Example of Default Arguments :

| # Function to multiply with default arqument
2 def nult default(a,b=10):
return a*h

print("Multiplication (89,3) 1s",mult default(s9,3))
print("Multiplication (89,b=Default) 1s",mult default(8g))

U L e s

Types of Arguments :

Unlimited Positional Arguments

» Some functions can have some compulsory
arguments and after that there can be any
number of arguments.

» Example is print().

» In print() function we can pass any number of
strings separated by comma.

» And all strings will get printed.

» So, programmer can also create such a function
taking unlimited arguments.

Types of Arguments :

Keyword Arguments

» These are another special category of arguments
supported in python.

» Here arguments are passed in format “key=value”

» All key-word arguments can be taken in a special
variable with **.

Return Statement :

» It is statement to return from a function to its
previous function who called this function.

» After return control goes out of the current
function.

» All local variables which were allocated memory
in current function will be destroyed.

» Return statement is optional in python.
» Any function can return multiple arguments.

Return Statement :

Example

» return

» return None
» returna, b
» return a

#This returns none value
#This returns none value
#This returns two values

#This returns single value

» These all are valid examples of a return

statement.

Anonymous Functions / Lambda Functions :
» Functions containing only single operation can be
converted into an anonymous function.

» ‘Lambda’ is the keyword used to create such
anonymous functions.

Syntax
Lambda < space > <parameter> : < operation >
Example

my_addition = lambda x, y : x +y
print(“addition is ”, my_addition(20, 30))
Output = 50

Documentation String
» In python, programmer can write a
documentation for every function.

» This documentation can be accessed by other
functions.

Advantage of Document string

» It is useful when we want to know about any
function in python.

» Programmer can simply print the document
string of that function and can know what that
function does.

Documentation String Example:

def func():

''''''

return
print(func.__doc__)

Standard Libraries in Python :

1. Math (import math)

» This is a package for providing various functionalities
regarding mathematical operations.

2. Random (import random)

» This is the module which supports various functions for
generation of random numbers and setting seed of
random number generator.

3. Numpy (import numpy)

» This is a package in python which supports various
numeric operations. It supports multidimensional arrays
or matrices and their calculations.

4. Scipy (import scipy)
» This is the package for various scientific computations.

Introduction to Modules :

» Modules make python programs re-usable.

» Every python code (.py) file can be treated
as a module.

» A module can be accessed in other module
using import statement.

» A single module can have multiple functions
or classes.

» Each function or class can be accessed
separately in import statement.

Introduction to Modules :

Example to create your own module
» Create a file named sample.py in your directory.

» Write function add() in it. (as we have seen in
previous sections)

» Now create another file trial.py in same directory
» In trial.py write

» import sample.add
print(“addition is “, sample.add(10,20))

» Now run trial.py.
» Now the output will be 30.

