UNIT I <u>Taylor's and Maclaurin's Series</u>

1) The expansion of f(x) in ascending powers of x about a = 0 is

a)
$$f(0) - xf'(0) + \frac{x^2}{2!}f''(0) - \frac{x^3}{3!}f'''(0) + \cdots$$

b) $f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$
c) $-f(0) - xf'(0) - \frac{x^2}{2!}f''(0) - \frac{x^3}{3!}f'''(0) - \cdots$
d) $f(0) + xf'(0) + x^2f''(0) + \frac{x^3}{3!}f'''(0) + \cdots$

- 2) Expansion of $e^{1/x}$ in powers of x is
 - a) $\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \cdots$ b) $1 + \frac{1}{x} + \frac{1}{2!x^2} + \frac{1}{3!x^3} + \frac{1}{4!x^4} - \cdots$ c) $1 - \frac{1}{x} + \frac{1}{2!x^2} - \frac{1}{3!x^3} + \frac{1}{4!x^4} - \cdots$ d) $x - \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3} + \cdots$
- 3) Expansion of $\log(1 x^4) \log(1 x)$ in ascending powers of x is
 - a) $-x \frac{x^2}{2} \frac{x^3}{3} \frac{3}{4}x^4 + \cdots$ b) $x + \frac{x^2}{2} + \frac{x^3}{3} - \frac{3}{4}x^4 + \cdots$ c) $x + \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{3}{4!}x^4 + \cdots$ d) $-x + \frac{x^2}{2} + \frac{x^3}{3} - \frac{3}{4}x^4 + \cdots$
- 4) The coefficient of $\left(x \frac{\pi}{3}\right)^2$ in the expansion of log cos x about $\frac{\pi}{3}$ is

a)
$$-\sqrt{3}$$

b) $\sqrt{3}$

- c) -2
- d) 2

5) The expansion of f(x + h) in ascending powers of *h* is

a)
$$f(h) + xf'(h) + \frac{x^2}{2!}f''(h) + \frac{x^3}{3!}f'''(h) + \cdots$$

b) $f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \cdots$
c) $f(h) - xf'(h) + \frac{x^2}{2!}f''(h) - \frac{x^3}{3!}f'''(h) + \cdots$
d) $f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{2!}f'''(x) + \cdots$

- 6) The coefficient of x^2 in the expansion of $tan\left(x+\frac{\pi}{4}\right)$ in ascending powers of x is
 - a) 1 b) 4/3! c) 2 d) 3!
- 7) The coefficient of x^{10} in the expansion of $\log(1 - x^2)$ is a) -1/10 b) 1/5c) 1/10 d)-1/5
- 8) The expansion of 1/x about x = 1 upto first three terms is
 - a) $1 (x 1) + (x 1)^2 \cdots$ b) $1 + (x - 1) + (x - 1)^2 + \cdots$ c) $1 + (x - 1) + \frac{(x - 1)^2}{2!} + \cdots$ d) $1 - (x - 1) + \frac{(x - 1)^2}{2!} - \cdots$
- 9) In the expansion of $x^3 + 7x^2 + x 6$ in powers of (x - 3) the constant term is a) 6 b)33 c) 87 d)32

- 10) The expansion of $\log(1 x)$ is a) $1 + x + x^2 + x^3 + x^4 + \cdots$ b) $1 - x + x^2 - x^3 + x^4 - \cdots$ c) $x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \cdots$ d) $-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \cdots$
- 11) The expansion of $e^x \log(1 + x)$ is

a)
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

b) $1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots$
c) $x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
d) $x - \frac{x^2}{2!} - \frac{x^3}{3!} - \cdots$

- 12) In the expansion of $\sin x$ about $x = \pi/2$
 - 2, the coefficient of $\left(x \frac{\pi}{2}\right)$ is a) 0 b)1/24 c) 1 d)1/6
- 13) The expansion of 1/(1 + x) in ascending powers of *x* is a) $-1 - x - x^2 - x^3 - \cdots$ b) $1 + x + x^2 + x^3 + \cdots$ c) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$ d) $1 - x + x^2 - x^3 + \cdots$
- 14) The coefficient of $(x 3)^4$ in the expansion of $x^4 - 3x^3 + 2x^2 - x + 1$ in powers of (x - 3) is a) 1 b) -1
 - c) 9 d)-9
- 15) Expansion of $\sinh x$ in ascending powers of x is

a)
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

b) $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$
c) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$
d) $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$

16) Expansion of $\cosh x$ in ascending

powers of x is
a)
$$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

b) $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$
c) $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$
d) $x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$

- 17) The n^{th} term in the expansion of e^{-x} is a) $x^{n-1}/(n-1)!$ b) $((-1)^{n-1}x^{n-1})/(n-1)!$ c) $x^n/n!$ d) $((-1)^n x^n)/n!$
- 18) The coefficient of x in the expansion of $e^x \cos x$ is
 - a) 0 b)-1 c) 1 d)1/2
- 19) The constant term in the expansion of

$$\tan^{-1} \left(\frac{p-qx}{q+px}\right) \text{ is}$$

a) $\tan^{-1}(p/q)$ b) $\tan(p/q)$
c) $\tan^{-1}(q/p)$ d) $\tan(q/p)$

20) First two terms in expansion of

$$\tan^{-1}(1+x) \text{ is}$$

a) $\frac{\pi}{4} + \frac{x}{2} - \cdots$
b) $x - \frac{x^3}{3!} + \cdots$
c) $\frac{\pi}{4} - \frac{x}{2} - \cdots$
d) $x + \frac{x^3}{3!} + \cdots$

- 21) The first three terms in the power series for log(1 + sin x) are
 - a) $x \frac{1}{2}x^3 + \frac{1}{4}x^5$ b) $x + \frac{1}{2}x^3 + \frac{1}{4}x^5$ c) $-x - \frac{1}{2}x^3 + \frac{1}{4}x^5$ d) $x - \frac{1}{2}x^2 + \frac{1}{6}x^3$

22) In the Taylor series expansion of

 $e^{x} + \sin x$ about the point $x = \pi$ the coefficient of $(x - \pi)^{2}$ is a) e^{π} b) $0.5e^{\pi}$ c) $e^{\pi} + 1$ d) $e^{\pi} - 1$

- 23) Which of the following functions would have only odd powers of x in its Taylor series expansion about the point x = 0.
 a) sin(x³)
 - b) $sin(x^2)$
 - c) $\cos(x^2)$
 - d) $\cos(x^3)$
- 24) The limit of the series $f(x) = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \cdots$ as x approaches $\frac{\pi}{2}$ is a) $2\pi/3$ b) $\pi/2$ c) $\pi/3$ d) 1
- 25) The Taylor series expansion of $\frac{\sin x}{x-\pi}$ at $x = \pi$ is given by

a)
$$1 + \frac{(x-\pi)^2}{3!}$$

b) $-1 - \frac{(x-\pi)^2}{3!}$
c) $1 - \frac{(x-\pi)^2}{3!}$
d) $-1 + \frac{(x-\pi)^2}{3!}$

26) Expansion of

$$log(1 + x + x^{2} + x^{3} + x^{4}) is$$

a) $-x - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} - \cdots$
b) $x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \frac{x^{4}}{4} - \cdots$
c) $x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \cdots$
d) $x + \frac{x^{2}}{2} + \frac{x^{4}}{3} + \frac{x^{5}}{4} - \cdots$

27) Expansion of $\sin x \cosh x$

a)
$$x + \frac{x^3}{3} + \frac{x^5}{30} + \cdots$$

b) $x - \frac{x^3}{3} - \frac{x^5}{30} + \cdots$
c) $x + \frac{x^3}{3} - \frac{x^5}{30} + \cdots$
d) None

28) Expansion of
$$\log\left(\frac{\tan x}{x}\right)$$

a) $\frac{x^2}{3} - \frac{7}{90}x^4 + \cdots$
b) $-\frac{x^2}{3} - \frac{7}{90}x^4 + \cdots$
c) $x + \frac{x^2}{3} - \frac{7}{90}x^4 + \cdots$
d) $\frac{x^2}{3} + \frac{7}{90}x^4 + \cdots$

29) Expansion of
$$sin(e^{x} - 1)$$
 is
a) $x + \frac{x^{2}}{2} - \frac{5}{24}x^{4} + \cdots$
b) $x + \frac{x^{2}}{2} + \frac{5}{24}x^{4} + \cdots$
c) $x - \frac{x^{2}}{2} - \frac{5}{24}x^{4} + \cdots$
d) None

30) The limit of the series

$$f(x) = 1 - x + x^2 - x^3 + x^4 - \cdots$$

as x approaches ¹/₂ is

as x approaches $\frac{1}{2}$ is

- a) 2/3
- b) 1/3
- c) 1
- d) 4/3
- 31) The limit of the series
 - $f(x) = 1 + x + x^{2} + x^{3} + x^{4} + \cdots$ as x Approaches $\frac{1}{2}$ is
 - a) 4
 - b) ∞
 - c) 3
 - d) 2

- 32) Representation of (x - 2)⁴ - 3(x - 2)³ + 4(x - 2)² + 5 in powers of x is
 a) 61 - 84x + 4x² - 11x³ + x⁴
 b) 61 + 84x - 4x² - 11x³ + x⁴
 c) 61 + 84x + 4x² - 11x³ + x⁴
 d) 61 + 84x + 4x² - 11x³ - x⁴
- 33) The first three terms in expansion of $x^4 3x^3 + 2x^2 x + 1$ in powers of (x - 3) is a) 16 - 38 $(x - 3) + 29(x - 3)^2$ b) 16 + 38 $(x - 3) - 29(x - 3)^2$ c) 16 - 38 $(x - 3) - 29(x - 3)^2$ d) 16 + 38 $(x - 3) + 29(x - 3)^2$

34) The Maclaurin series of

 $f(z) = 1/(1 + z^{2}) \text{ is}$ a) $1 - z^{2} + z^{4} - z^{6} + \cdots$ b) $1 + z^{2} + z^{4} + z^{6} + \cdots$ c) $1 - z^{2} - z^{4} - z^{6} + \cdots$ d) None

Indeterminate form

35)
$$\lim_{x \to 1} \frac{x - x^{x}}{1 + \log x - x}$$
 is
a) 0 b)1
c) ∞ d)2

36) If $\lim_{x\to 0} \frac{\sin 2x + p \sin x}{x^3}$ is finite then the value of p is a) 0 b)1 c) -2 d)2

37)
$$\lim_{x \to 0} \frac{\log(\tan x)}{\log x}$$
 is
a) 0 b) 1
c) -1 d) 2

38) $\lim_{x \to 0} \frac{\log(\sin 2x)}{\log(\sin x)}$ is a) 0 c) 1	b) -1 d) 2
39) $\lim_{x\to 0} x \log x$ is a) 0 c) 1	b) -1 d) 2
40) $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$ is a) 0 c) 1	b)-1 d) 2
41) The value of $\lim_{x\to 2} e^{-2}$ c) $-e^{-2}$	$\frac{xe^{-x}-2e^{-2}}{x-2}$ is b)1 d)-1
42) The value of $\lim_{x\to\infty} a$ a) -1 c) 1	$ \begin{pmatrix} \frac{1}{x} \end{pmatrix}^{1/x} \text{ is} \\ b) 0 \\ d) 2 $
43) The value of $\lim_{x\to 0} a$ a) -1 c) 1	$log_{tan x} \sin x is$ b) 0 d) 2
44) The value of $\lim_{x\to 0} a - 1$ c) 1	sin x log x is b) 0 d) 2
45) The value of $\lim_{x\to 0} a - 1$ c) 1	x log sin x is b) 0 d) 2
11069	b) $\frac{1 + \log y}{1 - \log y}$ d) $\frac{1 + \log y}{-1 - \log y}$
a) 0 c) $-n$	(b) n^2 d) 1

48) The value of $\lim_{x\to a} x$ a) a c) 0	sin(<i>a</i> / <i>x</i>) is b) 1/ <i>a</i> d) 1
49) The value of $\lim_{x\to 0} \frac{ld}{l}$	$\frac{\log(1-x^2)}{\log\cos x}$ is
a) 2	b)-2
c) 4	d)-4
50) The value of $\lim_{x\to 0} \left[\frac{1}{2}\right]$	$\left[\frac{a^x+b^x}{2}\right]^{1/x}$ is
a) <i>ab</i>	b) \sqrt{ab}
,	d) $-\sqrt{ab}$
c) <i>–ab</i>	d) — <i>v ab</i>
51) The value of $\lim_{x\to 0} \frac{a}{2}$ finite then	$\frac{e^x - b\cos x + ce^{-x}}{x^2}$ is
a) $a - b - c = 0$ b	a + b + c = 0
$c) -a + b - c = 0 \qquad d)$	0.2a + b - 3c = 0
52) The value of $\lim_{x\to 0} \frac{s}{2}$	20
finite then value of p is	
a) 1	b) 2
c) -1	d) -2
53) The value of $\lim_{x\to 0} (a a) 1/a$ c) <i>e a</i>	$(x^{x} + x)^{1/x}$ is b) 0 d) $-\sqrt{e}$
54) The value of $\lim_{x\to 0} \frac{4}{x}$ a) 1 c) -1 55) The value of $\lim_{x\to 1} \frac{x^2-3}{x}$ a) 1	b) 1/2 d) 2
c) -3 56) The value of $\lim_{x \to 1} \frac{x^2}{x^2 + 4}$ a) 1 c) -3	d) 2 $\frac{+5}{4x+3}$ is b) -1 d) 2

57) The value of equal to a) 1 c) 1/2	$\lim_{x \to \infty} \left(\frac{x^2 + 2x - 1}{2x^2 - 3x - 2} \right)^{\frac{2x + 1}{2x - 1}} \text{ is}$ b) 0 d) $e^{1/2}$
58) The value of a) 1 c) -3	$\lim_{x \to \infty} \left(1 + \frac{2}{x} \right)^x \text{ is}$ b) e^2 d) 2
59) The value of a) 5 c) -5	$\lim_{x \to \infty} \left(\frac{x-3}{x+2}\right)^x \text{ is}$ b) e^5 d) e^{-5}
60) The value of equal to a) -1 c) e^{-1}	$\lim_{x \to 1} (1 + \sin \pi x)^{\cot \pi x} \text{ is}$ b) e^{π} d) e
61) If $\lim_{x \to 0} \frac{\sin 2x}{x}$ <i>p</i> is a) 2 c) 1	$rac{p \sin x}{a}$ is finite then value of b) -2 d) -1
a) a - b) a - c) a -	$\frac{\cos x + c e^{-x}}{\cos n x} = 2 \text{ then}$ - b + c = 0 and a - c = 0 + b + c = 0 and a - c = 0 - b + c = 0 and a + c = 0 + b + c = 0 and a + c = 0
63) The value of a)-1 c)1	$\lim_{x \to 0} x^x \text{ is}$ b)0 d) ∞

64)	The value of $\lim_{x\to 0} x \log x$	c is
	a) -1	b) 0
	c) 1	d) ∞

65) The value of	$\lim_{x\to\infty} x^{1/x}$ is
a) 1	b) 0
c) ∞	d) −∞

66) It is given that $f(x) = \frac{ax+b}{x+1}, \lim_{x\to 0} f(x) = 2$ and $\lim_{x\to\infty} f(x) = 1$, then value of f(-2) is a) 1 b) 0 c) ∞ d) e

67)
$$\lim_{x\to\infty} x^{1/x}$$
 is equal to
a) e b) 0
c) ∞ d) 1
68) The value of $\lim_{x\to 0} \frac{e^{x}-1}{x}$ is
a) 1 b) 0 c) ∞ d) none

69) The value of $\lim_{x\to 0} \frac{a^x - b^x}{x}$ is a) $\log \frac{a}{b}$ b) $\log \frac{b}{a}$ c) $\log a$ d) $\log b$ 70) The value of $\lim_{x\to 0} \frac{x^2 + 8x}{x}$ is

a) 2 b) 0 c)
$$\infty$$
 d) none

- 71) The value of $\lim_{x\to 0} \frac{(1+x)^n 1}{x}$ is a) 1 b) n - 1 c) n d) none
- 72) The value of $\lim_{x \to 0} \frac{\log(\sin 2x)}{\log(\sin x)}$ is a) 1 b) 2 c) 1/2 d) 0
- 73) The value of $\lim_{x\to 0} \frac{\log(\tan 2x)}{\log(\tan x)}$ is a) 2 b) 1 c) 1/2 d) none
- 74) The value of $\lim_{x\to 0} \log_{\tan x} \tan 2x$ is a) 2 b) 1/2 c) 1 d) none
- 75) The value of $\lim_{x\to 0} \frac{\log(\tan x)}{\log x}$ is *a*) 0 *b*) ∞ *c*) 1/2 *d*) 1

76) The value of $\lim_{x\to\infty} x^{55}e^{-2x}$ is a) 1 b) 0 c) ∞ d) none 77) If $\lim_{x\to 0} \frac{a \sin 2x - b \tan x}{x^3}$ exists then which of the following is true a) a - b = 0 b) 2a + b = 0c) 2a - b = 0 d) a + b = 078) If $\lim_{x\to 0} \frac{a\cos x - a + bx^2}{x^4} = \frac{1}{12}$ then which of the following is true a) 2b + a = 0 b) 2b - a = 0c) 2a - b = 0 d) a + b = 079) If $\lim_{x\to 0} \frac{\sin x + ax + bx^3}{x^3} = 0$ then which of the following is true a) a = -1 b) 2b - a = 0c) 2a - b = 0 d) none 80) The value of $\lim_{x\to\infty} \frac{1+2+3+\cdots+x}{x^2}$ is a) 1/3 b) 1/6 c) $\frac{1}{2}$ d) 0 81) The value of $\lim_{x \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + x^2}{x^3}$ is a) 1/6 b) 1/3 c) 1/2 d) 0 82) If $\lim_{\theta \to 0} \frac{(a+b\cos\theta)\theta - c\sin\theta}{\theta^5} = 1$ then a) a - b - c = 0 b) a + b - c = 0c) a + b + c = 0 d) b - a - c = 083) If $\lim_{x \to 0} \frac{\sin 2x - b \tan x}{x^3} = 0$ then a) a = -1/2, b = -1b) a = 1/2, b = -1c) a = -1/2, b = 1d) a = 1/2, b = 184) The value of $\lim_{x \to 0} \frac{\tan x}{x}$ is a) 1 b) -1 c) -3 d) 0 85) If f(x) and g(x) are 2 functions such that f(a) = 0 and g(a) = 0 then $\lim_{x \to a} \frac{f(x)}{g(x)}$ is equal to a) $\lim_{x \to a} \frac{f''(x)}{g(x)}$ b) $\lim_{x \to a} \frac{f(x)}{g'(x)}$ c) $\lim_{x \to a} \frac{f'(x)}{g(x)}$ d) $\lim_{x \to a} \frac{f'(x)}{g'(x)}$

86) The value of
$$\lim_{x\to 0} \frac{a^{x}-1}{x}$$
 is
a) a b) $\log a$ c) $\log e$ d) e

87) The value of
$$\lim_{x \to 0} \frac{\cosh x - \cos x}{x^2}$$
 is
a) **0** b) ∞ c) 1 d) -1

88) If
$$\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}$$
 then
a) $b-a = 1$ b) $a-b = 1$
c) $a-b = 0$ d) $a-b = 3$

89) $\lim_{x \to 1} \frac{f(x)-2}{f(x)+2} = 0$, then $\lim_{x \to 1} f(x)$ is equal to a) 1 b) -1 c) -2 d) 2

90)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
 is equal to
a) ∞ b) 0 c) 2 d) 1

- 91) $\lim_{x \to \infty} \frac{x^3 \cos x}{x^2 + (\sin x)^2}$ is equal to a) ∞ b) 0 c) 2 d) 1
- 92) $\lim_{x\to 3} \frac{2x^2 7x + 3}{5x^2 12x 9}$ is equal to a) -1/3 b) 5/18 c) 0 d) 2/5

93)
$$\lim_{n\to 0} e^{-\frac{n}{\log n}}$$
 is equal to
a) 1 b) -1 c) 0 d) does not exist

94)
$$\lim_{n\to 0} 8^{-\frac{n}{\log n}}$$
 is equal to
a) 1 b) -1 c) 0 d) does not exist

95)
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{\frac{1}{n}} \left(1+\frac{2}{n}\right)^{\frac{1}{n}} \cdots \left(1+\frac{n}{n}\right)^{\frac{1}{n}}$$

is equal to
a) 1 b) 2/e c) 3/e d) 4/e
96) $\lim_{x\to 0} \frac{\sin^2 x}{x}$ is equal to
a) 0 b) ∞ c) 1 d) -1
97) $\lim_{x\to\infty} \frac{\log x}{x^n}$, $n > 0$ is equal to
a) 0 b) ∞ c) 1 d) -1
98) $\lim_{x\to\infty} \frac{x^m}{e^x}$, $m > 0$ is equal to
a) 0 b) ∞ c) 1 d) -1
99) $\lim_{n\to 0} 5^{-\frac{n}{\log n}}$ is equal to
a) 1 b) -1 c) does not exist d) 0
100) $\lim_{x\to\infty} \frac{x^m}{e^{x+2x^3}}$, $m > 0$ is equal to
a) 0 b) ∞ c) 1 d) -1
101) $\lim_{x\to\infty} \frac{x^m}{e^{5x-3x+78}}$, $m > 0$ is equal to
a) 0 b) ∞ c) 1 d) -1
102) The value of $\lim_{x\to 0} \left(\frac{1^{x+2^x+3^x+4^x}}{4}\right)^{\frac{1}{x}}$ is
a) $(24)^{1/4}$ b) 24 c) 10 d) $(6)^{1/4}$
103) The value of $\lim_{x\to 0} \frac{x^{55}e^{-2x}}{x}$ is
a) 1 b) 0 c) ∞ d) none of these
104) The value of $\lim_{x\to 0} \frac{(1+x)^{n-1}}{x}$ is
a) 1 b) $n -1$ c) n d) none
106) The value of $\lim_{x\to 0} \frac{(1+x)^{n-1}}{x}$ is
a) 1 b) 4 c) 5 d) none

Unit - IV
Taylor's & Maclaurin's Theorem , Indeterminant Form

Answer Key							
Q.No.	Ans	Q.No.	Ans	Q.No.	Ans	Q.No.	Ans
1	b	28	d	55	b	82	b
2	b	29	а	56	а	83	а
3	b	30	а	57	с	84	А
4	d	31	d	58	b	85	d
5	b	32	с	59	d	86	b
6	с	33	d	60	с	87	с
7	а	34	а	61	b	88	а
8	d	35	d	62	а	89	d
9	с	36	с	63	с	90	с
10	с	37	b	64	b	91	а
11	с	38	с	65	а	92	b
12	а	39	а	66	b	93	d
13	d	40	а	67	d	94	d
14	а	41	с	68	а	95	а
15	d	42	b	69	а	96	а
16	С	43	С	70	а	97	а
17	b	44	b	71	с	98	а
18	С	45	b	72	а	99	с
19	а	46	а	73	b	100	а
20	а	47	с	74	с	101	а
21	d	48	а	75	d	102	а
22	b	49	b	76	b	103	b
23	а	50	b	77	с	104	а
24	d	51	с	78	b	105	с
25	d	52	d	79	а	106	с
26	b	53	с	80	с	107	с
27	с	54	b	81	b		