Engineering Mathematics I Unit II

Fourier Series

1 A function f(x) is said to be periodic of period T if

a)
$$f(x+T) = f(x), \forall x$$

c) $f(-x) = f(x), \forall x$

$$f(-x) = f(x),$$

b)
$$f(x+T) = f(T), \forall x$$

d) $f(-x) = -f(x), \forall x$

- $\mathbf{2}$ Fourier series representation of periodic function f(x) with period 2π which satisfies the Dirichlet's conditions is
 - a) $\frac{a_0}{2} + \sum_{\substack{n=1\\\infty}}^{\infty} (a_n \cos nx + b_n \sin nx)$ c) $\frac{a_0}{2} + \sum_{\substack{n=1\\n=1}}^{\infty} (a_n \cos nx) (b_n \sin nx)$
- The Fourier series of an odd periodic function 3 contains only
 - a) Odd harmonic b) Even harmonic
 - c) Cosine terms d) Sine terms

c)

- 4 The trigonometric series of an even function does not have
 - a) Constant b) Sine terms
 - d) Odd harmonic Cosine terms terms
- If f(x + nT) = f(x) where n is any integer 5 then the fundamental period of f(x) is a) 2T b) T/2 c) *T* d) 3T
- 6 If f(x) is a periodic function with period T then $f(ax), a \neq 0$ is periodic function with fundamental period
 - a) T b) *T/a* c) aTd) π
- If f(x) = -f(-x) and f(x) satisfy the 7 Dirichlet's conditions, then f(x) can be expanded in a Fourier series containing Cosine terms and b) a) Only sine terms constant term
 - Sine terms and c) Only cosine terms d) constant term

- b) $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\pi x + b_n \sin n\pi x)$ d) $\frac{a_0}{2} + (a_n \cos nx + b_n \sin nx)$
- 8 Fundamental period of $\cos 2x$ is a) $\frac{\pi}{4}$ $\frac{1}{2}$ c) π
- 9 Fundamental period of $\tan 3x$ is b) $\frac{\pi}{3}$ a) $\frac{\pi}{2}$ c) π d) $\pi/4$
- 10 The value of constant terms in the Fourier series of $f(x) = e^{-x}$ in $0 \le x \le 2\pi$, $f(x+2\pi) = f(x)$ is
 - a) $\frac{1}{\pi}(1-e^{-2\pi})$ b) $\frac{1}{2\pi}(1-e^{-2\pi})$ c) $2(1-e^{-2\pi})$ d) $(1-e^{-2\pi})$
- 11 If $\psi(x) = f(x) f(-x)$ and $\psi(x)$ satisfy the Dirichlet's conditions, then $\psi(x)$ can be expanded in a Fourier series containing
 - Cosine terms and h) a) Only sine terms constant term Sine terms and
 - c) Only cosine terms d) constant term
- 12 If $\psi(x) = f(x) + f(-x)$ and $\psi(x)$ satisfy the Dirichlet's conditions, then $\psi(x)$ can be expanded in a Fourier series containing
 - Cosine terms and b) a) Only sine terms constant term Sine terms and c) Only cosine terms d) constant term

13 If f(x) is periodic function with period 2*L* defined in the interval *C* to C + 2L then Fourier coefficient a_0 is

a)
$$\int_{C}^{C+2L} f(x) dx$$

b)
$$\frac{1}{L} \int_{C}^{C+2L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

c)
$$\frac{1}{L} \int_{C}^{C} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

d)
$$\frac{1}{L} \int_{C}^{C} f(x) dx$$

14 If f(x) is periodic function with period 2*L* defined in the interval *C* to *C* + 2*L* then Fourier coefficient a_n is

a)
$$\int_{C}^{C+2L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

b)
$$\frac{1}{L} \int_{C}^{C+2L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

c)
$$\frac{1}{L} \int_{C}^{C+2L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

d)
$$\frac{1}{L} \int_{C}^{C+2L} f(x) dx$$

15 If f(x) is periodic function with period 2*L* defined in the interval *C* to C + 2L then Fourier coefficient b_n is

a)
$$\int_{C}^{C+2L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

b)
$$\frac{1}{L} \int_{C}^{C+2L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

c)
$$\frac{1}{L} \int_{C}^{C+2L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$

d)
$$\frac{1}{L} \int_{C}^{C+2L} f(x) dx$$

16 For an even function f(x) defined in the interval $-\pi \le x \le \pi$ and $f(x + 2\pi) = f(x)$ the Fourier series is

a)
$$\sum_{n=1}^{\infty} b_n \sin nx$$

b)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

c)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

d)
$$\sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

17 For an odd function f(x) defined in the interval $-\pi \le x \le \pi$ and $f(x + 2\pi) = f(x)$ the Fourier series is

a)
$$\sum_{n=1}^{\infty} b_n \sin nx$$

b)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

c)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

d)
$$\sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

18 Fourier coefficient for an odd function f(x) defined in the interval $-L \le x \le L$ and f(x + 2L) = f(x) are

a)
$$a_0 = 0, a_n = 0, b_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx$$
 b) $a_0 = \frac{2}{L} \int_0^L f(x) dx,$
 $a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{n\pi x}{L} dx, b_n = 0$
c) $a_0 = 0, a_n = 0, b_n = 0$
d) $a_0 = 0, a_n = 0,$
 $b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} dx$

19 Half range Fourier cosine series for f(x) defined in the interval $0 \le x \le L$ is

a)
$$\sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

b)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

c)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

d)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

20 Half range Fourier sine series for f(x) defined in the interval $0 \le x \le L$ is

a)
$$\sum_{n=1}^{\infty} b_n \sin \frac{nx}{L}$$

c)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

- 21 In Harmonic analysis the term $a_2 \cos 2x + b_2 \sin 2x$ is called
 - a) Second harmonic b) First harmonic
 - c) Third harmonic d) None of these
- 22 In Harmonic analysis the amplitude of first harmonic $a_1 \cos x + b_1 \sin x$ is

a)
$$\sqrt{a_1^2 - b_1^2}$$

b) $a_1^2 + b_1^2$
c) $\sqrt{a_1^2 + b_1^2}$
d) $(a_1^2 + b_1^2)^2$

- 23 For the certain data if $a_0 = 1.5$, $a_1 = 0.373$, $b_1 = 1.004$ then the amplitude of 1st harmonic is a) 1.07 b) 2.07
 - c) 1.004 d) 1.377

b)
$$\sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

d)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right)$$

24 Fourier series representation of periodic
function $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$
 $f(x) = \frac{8}{\pi^2} \left[\frac{1}{1^2} \cos x + \frac{1}{3^2} \cos 3x + \frac{1}{5^2} \cos 5x + \cdots \right]$
then value of $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots =$
a) $\frac{\pi^2}{4}$
b) $\frac{\pi^2}{8}$
c) $\frac{\pi^2}{16}$
d) $\frac{8}{\pi^2}$

- 25 Fourier series representation of periodic function $f(x) = \pi^2 - x^2, -\pi \le x \le \pi$ is $\pi^2 - x^2 = \frac{2\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \cos nx$ then value of $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots =$ a) $\frac{\pi^2}{3}$ b) $\frac{\pi^2}{4}$ c) $\frac{\pi^2}{6}$ d) $\frac{\pi^2}{12}$
- 26 Fourier coefficient a_0 in the Fourier series expansion of $f(x) = e^{-x}$; $0 \le x \le 2\pi$ and $f(x + 2\pi) = f(x)$ is a) $\frac{1}{\pi}(1 - e^{-2\pi})$ b) $\frac{1}{2\pi}(1 - e^{2\pi})$ c) $\frac{2}{\pi}(e^{-2\pi} - 1)$ d) $\frac{1}{\pi}(1 + e^{2\pi})$
- 27 Fourier coefficient a_0 in the Fourier series expansion of

 $f(x) = \left(\frac{\pi - x}{2}\right)^2; 0 \le x \le 2\pi \text{ and } f(x + 2\pi) = f(x)$ a) $\frac{\pi^2}{3}$ b) $\frac{\pi^2}{6}$ c) 0 d) $\frac{\pi}{6}$

28 Fourier coefficient a_0 in the Fourier series expansion of

 $f(x) = x \sin x; 0 \le x \le 2\pi \text{ and } f(x + 2\pi) = f(x)$ a) 2 b) 0 c) -2 d) -4

- ²⁹ $f(x) = \begin{cases} x, & 0 \le x \le \pi \\ 0, & \pi < x \le 2\pi \end{cases}$ and $f(x + 2\pi) = f(x)$ Fourier series is represented by $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, then Fourier coefficient a_0 is a) 2π b) $\pi/3$
 - c) 0 d) $\pi/2$

- 30 The Fourier constant a_n for $f(x) = 4 x^2$ in the interval 0 < x < 2 is a) $\frac{4}{\pi^2 n^2}$ b) $\frac{2}{n^2 \pi^2}$
 - a) $4/\pi^2 n^2$ b) $2/n^2 \pi^2$ c) $4/n^2 \pi$ d) $2/n \pi^2$
- 31 $f(x) = x, -\pi \le x \le \pi$ and period is 2π . Fourier series is represented by $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, Fourier coefficient b_1 is a) 2 b) -1 c) 0 d) $2/\pi$
- 32 For half range sine series of $f(x) = x, 0 \le x \le 2$ and period is 4. Fourier series is represented by $\sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{2}$, then Fourier coefficient b_1 is a) 4 b) 2 c) $\frac{2}{\pi}$ d) $\frac{4}{\pi}$
- 33 Fourier series representation of periodic function $f(x) = \left(\frac{\pi - x}{2}\right)^2$, $0 \le x \le 2\pi$ is $\left(\frac{\pi - x}{2}\right)^2 = \frac{\pi^2}{12} + \sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$, then value of $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots =$ a) $\frac{\pi^2}{6}$ b) $\frac{\pi^2}{12}$ c) $\pi^2/3$ d) 0

34 The value of a_0 in harmonic analysis of y for the following tabulated data is

		0				0		
	х	0	1	2	3	4	5	6
	У	9	18	24	28	26	20	9
ŧ	a) 17.85				b) 2	0.83		
(e) 35.71				d) 4	1.66		

35 The value of a_0 in harmonic analysis of y for the following tabulated data is

	x °	0	60	120	180	240	300	360	
	У	1.0	1.4	1.9	1.7	1.5	1.2	1.0	
a	a) 1.45 b) 5.8								
c) 2.9				d) 2	2.48			

36 The value of b_1 in Harmonic analysis of y for the following tabulated data is :

x °	0	30	60	90	120	150	180
у	0	9.2	14.4	17.8	17.3	11.7	0
$\sin 2x$	0	0.866	0.866	0	-0.866	-0.866	0
a) –3.116				b)	-1.558		
c) -4.16				d)	-1.336		

37 The value of a_1 in Harmonic analysis of y for the following tabulated data is :

x	0	1	2	3	4	5	6
у	4	8	15	7	6	2	4
$\cos\frac{\pi x}{3}$	1	$\frac{1}{2}$	$-\frac{1}{2}$	-1	$-\frac{1}{2}$	$\frac{1}{2}$	1

a)
$$-4.16$$

b) -8.32
d) -10.98

38 The values of a_1, b_1 in Harmonic analysis of y for the following tabulated data with period 2π are respectively:

	x	0	$\pi/2$	π	$3\pi/2$
	у	1	2	3	2
a) –2, 2			b)	0, 2	
c) 2, −2			d)	-2,0	

39 The value of a_2 in Harmonic analysis of y for the following tabulated data with period 2π is

	x	0	$\pi/4$	$\pi/2$	$3\pi/4$	π	$5\pi/4$	$3\pi/2$	$7\pi/4$	
	у	0	1	3	5	7	6	4	2	
a)	b) 0									
c)	2					d) -1/4	4			

40 The value of a_1 , a_2 in Fourier cosine series of y for the following tabulated data are

Fourier Series											
01 -a)	02 -b)	03 - d)	04 - b)	05 - c)	06 - b)	07 - a)	08 - c)	09 - b)	10 - b)		
11 - d)	12 - b)	13 - d)	14 - c)	15 - b)	16 - c)	17 - a)	18 - d)	19 - c)	20 - b)		
21 - a)	22 -c)	23 - a)	24 - b)	25 - d)	26 - a)	27 - b)	28 - c)	29 - d)	30 - a)		
31 - a)	32 - d)	33 - a)	34 - d)	35 - c)	36 - b)	37 - d)	38 - d)	39 - b)	40 - b)		